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Abstract— Flying quadrotors in tight formations is a chal-
lenging problem. It is known that in the near-field airflow
of a quadrotor, the aerodynamic effects induced by the pro-
pellers are complex and difficult to characterize. Although
machine learning tools can potentially be used to derive models
that capture these effects, these data-driven approaches can
be sample inefficient and the resulting models often do not
generalize as well as their first-principles counterparts. In this
work, we propose a framework that combines the benefits
of first-principles modeling and data-driven approaches to
construct an accurate and sample efficient representation of
the complex aerodynamic effects resulting from quadrotors
flying in formation. The data-driven component within our
model is lightweight, making it amenable for optimization-based
control design. Through simulations and physical experiments,
we show that incorporating the model into a novel learning-
based nonlinear model predictive control (MPC) framework
results in substantial performance improvements in terms of
trajectory tracking and disturbance rejection. In particular, our
framework significantly outperforms nominal MPC in physical
experiments, achieving a 40.1% improvement in the average
trajectory tracking errors and a 57.5% reduction in the maxi-
mum vertical separation errors. Our framework also achieves
exceptional sample efficiency, using only a total of 46 seconds
of flight data for training across both simulations and physical
experiments. Furthermore, with our proposed framework, the
quadrotors achieve an exceptionally tight formation, flying with
an average separation of less than 1.5 body lengths throughout
the flight. A video illustrating our framework and physical
experiments is given here.

I. INTRODUCTION
Quadrotor teams have emerged as leading contenders for

practical tasks such as surveillance [1], fighting forest fires
[2], payload transportation [3], and urban air transport [4].
However, the difficulty of close proximity flights impedes
critical subtasks such as docking [5], formation flight [6], and
other cooperative maneuvers [7]. In particular, the complex
aerodynamic effects that manifest within a quadrotor team
[8] makes it challenging for them to fly in tight formations.
Hence, the ability to characterize and compensate for these
aerodynamic effects would enable them to achieve tighter
formations and accomplish these tasks more effectively.

Related works: One possible approach to characterizing
these aerodynamic effects is to derive a first-principles model
based on physics and empirical data [9], [10], [11]. This
model can then be used for controller design to counter-
act these effects or disturbances. A key limitation of this
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Fig. 1: KNODE-DW MPC: Top: A composite photo depicting two
Crazyflie (CF) quadrotors flying in lemniscate trajectories, under a
stacked formation with a commanded separation of 2 body lengths.
This is achieved with our proposed framework. The frames used to
create this photo are extracted from a video taken during a physical
experiment. Bottom: Schematic of our framework. CF image in
schematic: [16].

approach is that these models are often overly simplified
and do not provide accurate predictions of the velocity flow
field and representations of the aerodynamic effects. A recent
study in [12] shows that the flow field near a quadrotor is
highly complex and nonlinear, which makes the modeling of
these aerodynamic effects using first principles particularly
challenging. An alternative approach is to first collect data
and extract a data-driven representation [8], [13]. These
data-driven models, however, are significantly less sample
efficient compared to first-principles models. Moreover, this
approach may require an onerous data collection procedure,
such as those described in [13], [14]. Instead, we leverage
a state-of-the-art deep learning tool, knowledge-based neural
ordinary differential equations (KNODE) [15]. This allows
us to construct a knowledge-based, data-driven representation
that only requires a small amount of data to train. More
importantly, this representation captures the complex aero-
dynamic effects with unprecedented accuracy.

To enable the quadrotors to fly in close proximity, the
derived models are often deployed in reactive controllers,
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e.g., [13], [17]. These controllers consider the aerodynamic
effects or disturbances at the current time step, but neglect
potential disturbances that may occur within the next few
time steps. On the other hand, model predictive control
(MPC) offers an opportunity to anticipate future aerody-
namic disturbances, through the consideration of a prediction
horizon. In [14], a learned model is incorporated into an
MPC framework, allowing two quadrotors to fly close to
each other. However, the tests considered in [14] are only
limited to short-duration traversals between two quadrotors,
and are conducted at one particular speed and separation
distance. Hence, it is unclear if the framework can generalize
to different flight conditions and maneuvers. In contrast, our
proposed framework achieves high accuracy across a wide
range of test cases. These include a particularly challenging
stacked formation, where a quadrotor constantly flies in the
wake of another quadrotor. The aerodynamic effects in this
case are highly transient, making it extremely challenging
for the quadrotors to achieve close proximity flight.

Contributions: The main contributions of this work are
three-fold. First, we introduce a novel knowledge-based,
data-driven model that accurately characterizes the complex
aerodynamic disturbances within a quadrotor team. We com-
bine analytical models of the quadrotor dynamics and aero-
dynamic disturbances, which we refer to as knowledge of the
system, with a data-driven component. Second, we incorpo-
rate the combined model into a nonlinear MPC framework, as
depicted in the schematic in Fig 1. We ascertain the closed-
loop performance through extensive simulations. Notably,
we show that our learning-based MPC framework achieves
performance comparable to an omniscient MPC framework,
where the model in the controller is identical to the true dy-
namics. Third, we demonstrate through physical experiments
that our framework achieves accurate and consistent closed-
loop performance across numerous test cases. In particular,
our framework generalizes exceptionally well beyond the
training dataset. With our framework, the quadrotors fly in an
incredibly tight formation, where they maintain an average
separation distance of less than 1.5 body lengths throughout
the entire flight. To the best of the authors’ knowledge, this
is a feat never achieved before for a quadrotor team of this
size and weight class.

II. PRELIMINARIES

A. Quadrotor Dynamics and Aerodynamic Disturbances

Consider a quadrotor system with the dynamics [18],

ṗ = v, v̇ = −g + (1/m)Rτ,

Jω̇ = α− ω × Jω, q̇ = Ω(q/2),
(1)

where p, v, ω := [ωx, ωy, ωz]
⊤ ∈ R3 and q ∈ R4 are the

position, velocity, angular rate and quaternions representing
its dynamics and kinematics. The vectors τ := [0 0 η]⊤ ∈
R3 and α ∈ R3 consist of the thrust η and torques generated
by the motors of the quadrotor. The matrix R ∈ R3×3 is
the rotation matrix from the body (B) to the world (W)

reference frame. The world frame follows the East-North-
Up convention where the z axis is pointing upwards. The
matrix Ω ∈ R4×4 is defined as

Ω :=


0 −ωx −ωy −ωz

ωx 0 ωz −ωy

ωy −ωz 0 ωx

ωz ωy −ωx 0

 . (2)

The mass and inertia matrix of the quadrotor are denoted
by m and J ∈ R3×3 respectively. By defining the state and
control inputs as x := [p⊤ v⊤ q⊤ ω⊤]⊤ and u := [η α⊤]⊤,
the equations of motion (1) can be written in a compact form,

ẋ = fnom(x, u), (3)

which we refer to as the nominal dynamics model.
Consider a scenario where two quadrotors fly in a tight

formation where they must maintain a fixed vertical sep-
aration distance. We refer to them as the bottom and top
quadrotors. The positions of the quadrotors are denoted by
p ∈ R3 and ptop ∈ R3, and the position difference is given by
∆p := p−ptop. By denoting the unit vector of the body frame
of the top quadrotor in the z direction as e′3, we define a flow
field reference frame F with the unit vectors {e1, e2, e3}
given as

e1 = e2 × e3, e2 =
e3 ×∆p

||e3 ×∆p||2
, e3 = −e′3, (4)

and the rotation matrix RF
W ∈ R3×3 rotates a vector from

W to F .
To characterize the disturbances on the bottom quadrotor,

we consider a velocity flow model [11] where the relative
velocity of the airflow towards a point pf := [xf yf zf ]

⊤ ∈
R3 on the bottom quadrotor in the frame F is given as

V (z, r) =
UH

Bd
z̃−z0(

1 +
(√

2− 1
) (

r̃
S(z̃−z0)

)2
)2 − vFz , (5)

where S ∈ R is the spreading factor and the velocity
vF = RF

W v := [vFx vFy vFz ]⊤ ∈ R3. The radial and
vertical separations between pf and the top quadrotor in
the frame F are denoted as r and z respectively, where
r :=

√
x2
f + y2f and z := zf . The normalized separations

are given as r̃ := r/λ and z̃ := z/λ. For more details on the
flow model, readers are referred to [11].

Using (5), the disturbance forces τd ∈ R3 and torques
αd ∈ R3 are computed as in [9],

τd (x, xtop) =

∫
Ab

e3 CD ζ dA, (6a)

αd (x, xtop) =

∫
Ab

(
pf −RF

W∆p
)
× e3 CD ζ dA, (6b)

where the dynamic pressure is denoted by ζ := 1
2ρV (z, r)2 ∈

R, CD ∈ R is the drag coefficient, and the vector xtop ∈ R13

denotes the state of the top quadrotor. The surface area of



the bottom quadrotor is a circle, i.e., Ab := π(λ/2)2. These
forces and torques (6) are succinctly expressed as

ẋdw =

[
01×3

(RF ⊤
W τd)

⊤

m 01×4 J
−1
(
RF ⊤

B αd

)⊤]⊤
:= fd (x, xtop) .

(7)

It is important to note that the model (7) is unlikely to
be highly accurate in practice, due to the complexity of
the near-field airflow of the quadrotor, as discussed in [12].
This is particularly evident when the quadrotors are in a
tight formation, i.e. when the vertical separation within the
quadrotors is less than 2 body lengths. In these conditions,
the flow model (5) is likely to provide accurate predictions
only in the far-field airflow below the top quadrotor [11].
Given that it is challenging to derive a model that accu-
rately characterizes the near-field airflow, our approach is
to leverage this simplified model (7) as part of our prior
knowledge within the overall dynamics model, and use a
data-driven component to learn the complex dynamics of the
aerodynamic disturbances, described in Section III-A.

B. Learning-based MPC

To control the quadrotor system, we consider the following
finite horizon optimal control problem [19],

min.
{xi},{ui}

N−1∑
i=0

||xi − xr,i(k)||2Q + ||ui||2R (8a)

+ ||xN − xr,N (k)||2P (8b)

s.t. xi+1 = f̂(xi, ui; θ
⋆), i = 0, . . . , N − 1, (8c)

xi ∈ X , ui ∈ U , i = 0, . . . , N − 1, (8d)
xN ∈ Xf , x0 = x(k), (8e)

where N ∈ N+ denotes the prediction horizon and the
notation ||x||A denotes x⊤Ax. The matrices Q, R and P
are the cost matrices for the state, control and terminal state
costs respectively. The sets X , Xf and U define the state,
terminal state and control input constraints. The vector x(k)
is the state measurement at the kth time step. The sequence
{xr,i(k)}Ni=0 denotes the reference state trajectories to be
tracked by the system. At each time step, the problem (8) is
solved in a receding horizon manner to obtain a sequence of
optimal control inputs {u⋆

i }
N−1
i=0 , and the first element of the

sequence u⋆
0 is applied as the control action to the system.

The key difference between (8) and that in a nominal
MPC framework lies in the dynamics constraints (8c). In
nominal MPC, a nominal model (3) is used as the dynamics
constraints. However, due to the presence of unmodeled dy-
namics, this nominal model may not be sufficiently accurate
in representing the true system dynamics, which can cause a
degradation in the closed-loop performance. To alleviate this
issue, a learning-based framework is applied. A model with
trained parameters θ⋆ is used to characterize the full dynam-
ics, which includes the unmodeled dynamics. This model is
then applied to the constraints (8c). It has been shown in
prior work that a learning-based MPC framework provides
significant performance improvements over nominal MPC

[20], [21]. In this work, we apply a similar methodology, but
with some enhancements to accommodate the aerodynamic
disturbance model (7) and the predictions of the state of the
top quadrotor xtop.

III. MODEL AND CONTROL DESIGN

A. Model Formulation and Training

For the dynamics model, we consider a state-of-the-art
deep learning tool, knowledge-based neural ODEs (KNODE)
[15], [22], to incorporate knowledge of the quadrotor dynam-
ics and aerodynamic disturbances during training and within
the controller. First, we parameterize the residual aerody-
namic effects that are not captured by knowledge using a
neural ODE d(x, xtop; θ). This neural ODE is constructed
as a Υ-branch, L-layer feedforward neural network,

h0,υ =
[
z, r, vFz

]⊤
, υ = 1, . . . , Υ, (9a)

hL,υ = MLPυ(h0,υ), υ = 1, . . . , Υ, (9b)

d(x, xtop; θ) := MH [h⊤
L,1, . . . , h

⊤
L,Υ]

⊤, (9c)

where H ∈ R13×(nLΥ) is a selection matrix. The multi-layer
perceptron (MLP) for the υth branch, MLPυ(h), is given as

MLPυ(h) := WLυ ϕ(L−1)υ (. . . ϕ0υ(h)) + bLυ, (10a)

where

ϕlυ(h) = σ (Wlυh+ blυ) , l = 0, . . . , L− 1, (10b)

and the weight matrix and bias vector are given as
Wlυ ∈ Rnl+1×nl and blυ ∈ Rnl+1 . The hyperbolic tan-
gent is used as the activation function σ. Collectively,
the parameters of the neural ODE are denoted by θ :=
{(W01, b01) , . . . , (WLΥ, bLΥ)}.

This architectural choice in (9) imposes structural knowl-
edge about the disturbances experienced by the bottom
quadrotor. First, choosing the inputs as in (9a) results in a
neural ODE that is axially symmetric about the z-axis of F .
Second, the MLP outputs in (9b) are enforced to be in F by
scaling and rotating them into the required reference frames,
outside of the network. This is done by multiplying them by
the matrix H , followed by M ∈ R13×13 given by

M :=

[
M11 010×3

03×10 Ĵ
−1
R⊤RF

W
⊤

]
, (11a)

where

M11 =

 03×10

03×3
RF

W
⊤

m 03×4

04×10

 , (11b)

and Ĵ
−1

:= J
−1
/||J−1||F where || · ||F is the Frobenius norm.

Combining the neural ODE with the knowledge described
in Section II-A, the overall KNODE-DW model is given as

ẋ(θ) = fnom(x, u) + fd(x, xtop) + d (x, xtop ; θ) , (12)

and we denote a model consisting of only the components
fnom(x, u) and d (x, xtop ; θ) as the KNODE model. We
highlight that our approach is fundamentally different from



those in the existing literature, e.g., [14], [23]. We leverage
analytical models and use a data-driven component to capture
the residual aerodynamics, while existing works use the data-
driven component to capture the full aerodynamics, similar
to a KNODE model.

To train the model, we follow a procedure that is similar
to those described in [20], [24]. Given a dataset D =
{(xi, xtop,i, ui)}Mi=1, we define the loss function to be a
weighted mean squared error (MSE) between the one-step
state predictions and the true states,

L(θ) := 1

M − 1

M∑
i=2

∥∥(x̂i(θ)− xi

)∥∥2
Wx

, (13)

where Wx ∈ Rn×n is a user-specified weighting matrix. The
one-step predictions are given as

x̂i(θ) := xi−1 +

∫ ti

ti−1

ẋi−1(θ) dt, i = 2, . . . ,M (14)

where the integration is done using a given numerical solver.
Next, we leverage deep learning tools, e.g., PyTorch [25],
to find a set of optimal parameters θ⋆. In particular, we
compute the gradient of the loss function L(θ) through a
backpropagation procedure, and incorporate them into an
optimization algorithm, e.g., Adam [26], which solves for
the parameters θ⋆ in an iterative manner.

One advantage of neural ODEs, as compared to standard
networks, is that force and torque measurements are not
required. In practice, the acceleration measurements from the
inertial measurement unit (IMU) are noisy and may contain
non-constant biases. Furthermore, the IMU only provides
measurements of the angular velocities. This implies that
the moments of inertia have to be sufficiently accurate such
that accurate torque estimates can be extracted. On the other
hand, velocity and orientation estimates are more easily
attainable and are often more accurate.

B. Incorporating into Learning-based MPC

After training, we incorporate the learned KNODE-DW
model into the optimization problem by replacing (8c) with
an updated set of dynamics constraints. These constraints are
constructed by discretizing (12) with the parameters θ⋆ using
a suitable numerical method, e.g., 4th order Runge Kutta. At
each time step k, the constraints are given as,

xi+1 := f̂(xi, ui, xtop,i(k); θ
⋆), i = 0, . . . , N − 1. (15)

To incorporate the states of the top quadrotor, we formulate
(8) as a parametric optimization problem. In this formulation,
the current state x(k), the reference states {xr,i(k)}Ni=0

and the states of the top quadrotor {xtop,i(k)}N−1
i=0 act as

parameters to the problem. To obtain the states of the top
quadrotor along the prediction horizon, we assume that it
travels at a constant velocity along the prediction horizon,
and propagate its position using this velocity.

Using an optimization-based control formulation like MPC
provides two advantages. First, given a sequence of position
estimates of the top quadrotor, the bottom quadrotor is able

to anticipate and account for the aerodynamic disturbances
in the next few timesteps of its flight. In particular, the
problem (8) considers the proximity of the top quadrotor
when computing the control actions for the bottom quadrotor.
This is in stark contrast with some of the current control
architectures for close proximity flight, e.g., [13], [17]. These
controllers only considers the disturbances caused by the top
quadrotor at the current time step. Second, since it is an
optimization-based scheme, it is straightforward to include
collision avoidance constraints into (8), given the position of
the quadrotors. We leave the integration of these constraints
as part of future work.

The incorporation of the KNODE-DW model into the
MPC framework is a natural, yet significant, extension of
our prior work [20]. The key architectural difference is the
addition of the disturbance model (7), during training and
deployment. While our proposed approach is conceptually
similar, it is shown in our experiments that the framework
in [20] does not necessarily lead to accurate closed-loop
performance under all test cases. A detailed discussion is
given in Section IV.

IV. EXPERIMENTS AND RESULTS

In our experiments, we set out to answer the follow-
ing questions about our proposed framework: (i) Does the
KNODE-DW model provide accurate predictions of the
disturbance forces and torques caused by the top quadrotor?
(ii) By incorporating the model into learning-based MPC,
are there significant improvements in terms of closed-loop
trajectory tracking performance, over meaningful baselines?
(iii) Do the model and control framework generalize to cases
beyond in which training data is collected? (iv) Do the results
observed in simulations extend to physical experiments? (v)
Can the quadrotors fly in a tight formation with the proposed
framework?

We consider a number of baselines to ascertain the effi-
cacy of our framework. First, we consider a nominal MPC
framework, which consists of the nominal dynamics fnom.
This allows us to examine the improvements brought forth by
the disturbance model fd and the neural ODE d(θ⋆). Next,
we consider a KNODE-MPC framework, which leverages
fnom as knowledge, and uses a neural ODE to account for
all unmodeled dynamics, including the aerodynamic distur-
bances. Third, we consider DW-MPC, which only comprises
of fnom and fd and there are no learning components in it.
In the simulations, we consider an additional benchmark, an
omniscient MPC framework, where the model is identical
to the true system dynamics. Finally, we have our proposed
framework, KNODE-DW MPC, which not only consists of
both fnom and fd, but also includes a neural ODE d(θ⋆).

A. Simulations

Setup: A simulator is constructed using (3) and the distur-
bance model (7). An explicit 5th order RK method (RK45)
with a time step of 5 ms is used for numerical integration to
simulate the responses for the system. The disturbances (6)
are implemented using a first-order approximation of the 2D



trapezoidal rule. To ascertain the efficacy of the neural ODE,
we consider a mismatch between the disturbance model in
the simulator and that in the controller. The simulated values
of CD and S are 1.3 and 0.0697, and these values in the
controller are 1.18 and 0.0997.

The learning-based MPC framework is assumed to have
access to the states of both quadrotors. The framework
is implemented using acados [27] and CasADi [28].
It generates thrust and moment commands, which act as
inputs to the simulator which generates the closed-loop
responses. In simulations, we consider a two-branch, 1-
layer neural ODE with 9 neurons for each branch. The
elements of the selection matrix Hij are set to be 1 for
(i, j) ∈ {(4, 4), (5, 5), (6, 6), (4, 17), (5, 18), (6, 19)} and 0 else-
where, and the two branches represent the residual distur-
bance forces and torques.

For two quadrotors moving in a straight path, we observe
that the case of crossing trajectories, i.e., when their 2D tra-
jectories overlap momentarily, is significantly more benign,
as compared to the cases of a static top quadrotor or when
the quadrotors are in a stacked formation. This is because the
time period in which the bottom quadrotor experiences the
disturbances is shorter. While the case of crossing trajectories
is more commonly considered in the literature, e.g., [13],
[14], we are interested in testing the limits of our framework.
That motivates us to consider these two latter cases, which
we denote as static top and stacked, in both simulations and
physical experiments.

The training data D consists of four flight segments. Two
of the segments are from the static top case, while the other
two are from the stacked case. The dataset consists of 3,532
data points, which corresponds to approximately 18 seconds
of flight. They are obtained from closed-loop simulations
with nominal MPC, at a speed of 0.4 m/s and separations
of 0.3 m and 0.4 m. We set Wx := diag (I10×10, 0.1 I3×3)
during training. Apart from training cases, additional tests are
conducted at two other speeds, 0.3 m/s and 0.5 m/s, and at
two other separations of 0.35 m and 0.2 m. This is to evaluate
the generalization abilities of the model and controller.

Results: To verify the accuracy of the models, we com-
pare the predictions of the disturbance forces and torques
against with the true disturbances. As seen from Fig. 2, the
KNODE-DW model provides the most accurate predictions
in both the stacked and static top cases, attaining a 89.5%
improvement over the nominal model, on average. While
the KNODE model achieves similar improvements in force
predictions under the stacked formation, the prediction errors
are relatively large under the static top scenario. Furthermore,
the KNODE model does not yield accurate predictions for
the torques, performing worse than the nominal model at
times. In contrast, the DW model provides more consistent
predictions for the torque predictions, but fares worse for the
force predictions. Overall, the KNODE-DW model combines
the strengths of both the KNODE and DW models. We
highlight that in the current literature, disturbance torques
are typically not considered within the controllers, e.g., [13],
[14], [17]. In contrast, our proposed framework predicts and
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Fig. 2: Force (τd) and torque (αd) predictions: Heatmaps of the
prediction root mean squared errors (RMSEs) given by the KNODE,
DW and KNODE-DW models, normalized against those given by
the nominal model, under different speeds and vertical separations.

compensates these torques in a systematic manner, as shown
in Figs. 2 and 3.

Next, we compare the proposed KNODE-DW MPC frame-
work against the baselines, in terms of the closed-loop
tracking performance. We consider two metrics, the root
mean squared errors (RMSEs) between the bottom quadro-
tor and reference trajectories, and the maximum vertical
separation zmax, which is computed by taking the longest
distance between the bottom quadrotor and reference heights.
It is observed in Fig. 3 that all four control frameworks
perform better than nominal MPC, since all the percentages
are less than 100%. Notably, KNODE-DW MPC achieves
performance that is comparable to omniscient MPC in all
cases, reducing the average RMSEs and zmax by 89% and
96.5% over nominal MPC. It is observed that KNODE-DW
MPC and DW MPC perform better than KNODE MPC on
average, and DW MPC is consistent than KNODE MPC
across the test cases. This illustrates the importance of
embedding knowledge into training and within the control
framework.

B. Physical Experiments

Setup: Two Crazyflie 2.1 quadrotors [16] are deployed in
the experiments. Each of the quadrotors has a body length of
10 cm and weighs approximately 34g. The bottom quadrotor
is equipped with the thrust upgrade bundle [16] to increase
its control authority. A laptop running on Intel i5 CPU acts as
the base station and communication between the Crazyflies
are established via Crazyradio PA at an average rate of 400
Hz. A Vicon motion capture system is used to obtain pose
measurements and communicates with the base station at an
approximate rate of 120Hz. The CrazyROS wrapper [29] is
used as part of the software architecture.

The learning-based MPC framework is implemented using
the same software as that in simulations and operates on
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Fig. 3: Closed-loop performance: Heatmaps of the tracking
RMSEs and maximum vertical separation (zmax) of the baseline
and proposed MPC frameworks, normalized against those obtained
from nominal MPC, under different speeds and vertical separations.

the base station. Instead of generating thrust and moment
commands, the framework in physical experiments generates
thrust and angular rate commands, which are passed to
the PID controllers running in the Crazyflie firmware. With
this control architecture, we compensate for the disturbance
forces and not the torques, by setting M := M11. We define
d(x, xtop; θ) to be a single branch, single layer neural ODE
with 4 hidden neurons. The elements of the selection matrix
Hij are 1 for (i, j) ∈ {(4, 4), (5, 5), (6, 6)} and 0 elsewhere. To
obtain an approximate model for the disturbance forces, we
conduct a system identification procedure where we adjust
the model parameters so that DW MPC attains reasonable
performance under training conditions, and CD is set at
0.236.

Similar to the simulations, the training data is collected
under the static top and stacked cases at a speed of 0.4m/s
and a separation of 0.4m. The dataset consists of 6,720 data
points, corresponding to 28 seconds of flight. This is done
in closed-loop by flying the quadrotors under nominal MPC.
This is in stark contrast with [14], where the model is trained
using 570 seconds of data. To ascertain generalization, an-
other test case at a speed of 0.4m/s and at a smaller separation
of 0.2 m is considered.

Results: Fig. 4 depicts the statistics of the runs under
different baselines. For each test case, 5 runs are conducted.
First, we observe that all 3 baselines, KNODE MPC, DW
MPC and KNODE-DW MPC, perform better than nominal
MPC, which demonstrate the importance of having an accu-
rate model in the controller. Moreover, it is observed that the
KNODE-DW MPC framework not only achieves the lowest
RMSEs, but also maintains the smallest zmax across all test
cases. In particular, our proposed framework achieves an av-
erage of 40.1% improvement in RMSE and 57.5% reduction
in zmax over nominal MPC across the test cases. While
KNODE MPC provides comparable performance in cases
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Fig. 4: Experiment statistics: Statistics of the runs for the
baselines and the proposed framework. The top subplot depicts the
RMSEs, and the maximum vertical separation (zmax) is shown in
the bottom subplot. The markers and the error bars indicate the
mean and standard deviation of the runs. The values behind the
test cases in the legend, e.g., 0.2m for stacked 0.2m, denote the
commanded vertical separation between the two quadrotors.
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bottom quadrotor, under the baselines and KNODE-DW MPC. This
is during a more challenging test case, where the vertical separation
between the two quadrotors is set at 0.8 body lengths throughout
the flight.

where training data is collected, it fails to provide consistent
performance for the other two test cases, unlike KNODE-
DW MPC. The improvement of KNODE-DW MPC over DW
MPC indicates that the neural ODE is able to compensate
for the mismatch between the knowledge component and the
true system dynamics.

To further evaluate the performance of our framework,
we first consider a complex flight formation, as shown in
the composite photo in Fig. 1. The two CFs are flying in
vertical lemniscate trajectories, while maintaining a stacked
formation. Even though the model has not seen this trajectory
during training, it performs remarkably well, highlighting the
generalization ability of our framework. Next, we consider a
more challenging stacked formation where the two quadro-
tors fly in a straight line, under a very tight formation. They
are commanded to be 0.8 body lengths (0.08m) vertically
apart, throughout the flight. The time histories of the vertical
separation z is shown in Fig. 5. Under KNODE-DW MPC,
the average vertical separation between the drones is 0.12m,
which is 57.1% smaller than that when nominal MPC is



applied, which is at 0.28m. We highlight that this vertical
separation of 1.2 body lengths is significantly smaller than
what has been reported in the literature, which is of at least
2 body lengths, e.g., [5], [17]. We also note that the average
radial separation r under our framework is at 0.03m, which
implies that the bottom quadrotor is well in the wake of
the top quadrotor. The difficulty of flying in such a tight
formation stems from the complex aerodynamic disturbances
experienced by the bottom quadrotor, when it is within 2
body lengths of the top quadrotor [11], [12]. We demonstrate
with this demanding test case that our framework is able to
overcome these complex aerodynamic disturbances, enabling
tight formation flight for the first time. Interested readers are
referred to the accompanying video for more details on the
physical experiments.

V. CONCLUSION

In this work, we present a framework to model and learn
the aerodynamic disturbances caused by another quadrotor
in an accurate and sample efficient manner. It is demon-
strated through simulations and physical experiments that the
proposed model and control framework are highly accurate
in terms of disturbance predictions, as well as closed-loop
trajectory tracking performance. One possible direction of
future work is to consider contemporary uncertainty quan-
tification methods such as those in [30], to improve the
uncertainty awareness in these tight formations.
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