
Obstacle Avoidance in Dense Environments using
MPC

Pei An Hsieh
School of Engineering and

Applied Science
University of Pennsylvania

Email: pahsieh@seas.upenn.edu

Zhenzhen Shao
School of Engineering and

Applied Science
University of Pennsylvania

Email: zhens@seas.upenn.edu

Zi-Yan Liu
School of Engineering and

Applied Science
University of Pennsylvania
Email: lzi@seas.upenn.edu

Abstract—In this final project, we compared two obstacle
avoidance methods: Local Model Predictive Contouring Control
(LMPCC) and Dynamic Window Approach (DWA). In addition,
we present Obstacle Window Filtering, which improves the
safety performance of LMPCC in dense environments. Obstacle
Window Filtering filters obstacles set as constraints in LMPCC
by a safety distance. The optimization solver produced better
solutions by reducing the number of constraints, allowing robots
to avoid more collision scenarios. The analysis also showed
that although the current LMPCC method outperforms the
traditional DWA, both do not scale well in dense environments.

I. INTRODUCTION

Studies in robotics have evolved dramatically in past
decades, however, one of the greatest challenges for robots is
to safely and efficiently plan trajectories that are in crowded
dynamic environments.

Traditional control policies often struggle in such scenarios,
leading to issues like the freezing robot problem[1], where
a robot becomes immobilized or acts aggressively facing
complex obstacles, which increases the risk of collisions.
Furthermore, the unstructured and non-convex constraints of
environments make the optimization computationally expen-
sive, often resulting in slow responses that not suitable for
real-time applications.

This study focuses on implementing and experimenting with
advanced local planning approaches to address the challenges
above. This includes Local Model Predictive Contouring Con-
trol (LMPCC), which provides us with a framework that
considers system dynamics and future control inputs[2], and
Dynamic Windows Approach (DWA)[3], which is a traditional
approach for real-time dynamic obstacle avoidance. We also
propose Obstacle Window Filtering (OWF), which filters ob-
stacles by distance and improves the performance of LMPCC.

II. METHODS

A. Local Model Predictive Contouring Control (LMPCC)
The LMPCC collision avoidance method proposed in [2]

consists of the following steps, which are executed in every
planning loop.

1) Identify a collision-free area centered around the robot
in the static map and establish constraints on the control
problem to keep the robot within this region.

2) Anticipate the future positions of dynamic obstacles and
employ boundaries to guarantee collision avoidance.

3) Address the control problem by solving a tailored Local
Model Predictive Contouring Control (LMPCC) formu-
lation designed for mobile robots.

1) Static Collision Avoidance: The available space in an
unstructured scene is typically non-convex, posing challenges
for optimization tasks due to slow and difficult computations.
Our objective is to determine a set of convex rectangular areas
centered around the robot and its predicted trajectory within
the unoccupied regions of the environment’s static map. To
derive the set of convex regions at time t, we first retrieve the
optimal MPC trajectory computed and recorded at time t-1 to
calculate collision-free areas for the current optimal trajectory
computation. For every point qk (k=1,...,N) we compute a
convex region in free space defined by a set of four linear
constraints[2] cstatk (qk) = U4

l=1 c
stat,l
k (qk), a rectangular region

aligned with the orientation of the trajectory at qk, with each
linear constraint obtained through a search routine.

2) Dynamic Collision Avoidance: Each moving obstacle i
is characterized by its position pi(t) and a circular shape with
a radius robs. For each obstacle i ∈ 1, .., N , and prediction step
k, we enforce the condition that the robot’s circle wouldn’t
intersect with the ocuppied area defined by the obstacle’s
circle. The inequality constraint for each disc of the robot
concerning the obstacles is expressed as follows:

cobst,ik (zk) =

[
∆xk

i

∆yki

]T [
∆xk

i

∆yki

]
> 1 (1)

3) Cost function for optimization: Here we define a contour
error, angular and velocity penalty for tracking of the reference
path, and obstacle distance cost and repulsive penalty for
obstacles.

ek = [pk − pk]

Jtrack(pk,pk) = eTkQek
Jang(ϕk,ϕk) = (ϕk − ϕk)

2

Jvel(velk, velk) = (velk, velk)2

Jrepulsive(pk, p
obs
k ) =

n∑
i=1

1

(δxk)2 + (δyk)2 + γ

(2)



4) Solving LMPCC Problems: Local Model Predictive
Contouring Control (LMPCC) is a variant of MPC that focuses
on following a predefined path as closely as possible while also
considering local dynamic constraints.

With current models and obstacles, the function is as
follows:

J∗ = min
u

N−1∑
k=0

J(zk, uk, θk) + J(zN , θN )

s.t.: ([2]), (1)

zk+1 = f(zk, uk), θk+1 = θk + ukτ

(3)

In which, the objective function quantifies the cost of control
effort and deviation from the desired path. The conditions
include the dynamic model of the system and both static and
dynamic obstacle constraints. By solving this problem, the
system manages to follow the reference path closely till the
goal.

B. Obstacle Window Filtering (OWF)

We employ the cost function and constraint function dis-
cussed in Section II-A2 and II-A4 for optimization. However,
through multiple experiments, it became evident that LMPCC
tends to undergo slow optimization and, in some cases, fails to
find feasible solution when the number of dynamic obstacles
increases. Consequently, we have introduced a filter II-B for
dynamic obstacles, excluding those that are far away. The
rationale behind this is to eliminate obstacles that the robot
may not reach within a certain timeframes, thereby allowing
the LMPCC to focus only on the obstacles that are possible
to cause collision.

Algorithm 1 Obstacle Window Filtering (OWF)
1: constraintsobs = {}
2: obs remaining = N , thresdis = a number
3: while obs remaining > 0 do
4: obs remaining− = 1
5: if dist(pk,p

i
k) < thresdis then

6: Calculate Cobst,i
k

7: Add Cobst,i
k to constraintsobs

8: end if
9: end while

C. Dynamic Window Approach

The Dynamic Windows Approach (DWA) is designed to
deal with the constraints imposed by limited velocities and
accelerations of the robot. It is a sampling-based optimization
in the velocity space.

A valid search space is reachable within the time interval
while allowing the system to fully stop before the system
collides with the closest object in the context of admissible
velocities. All possible trajectories considered in optimization
should fall in the search space and be uniquely determined by
linear velocity(v) and angular velocity(ω).

Following is the objective function that we want to minimize
over v and ω.

G(v, ω) = σ(α ·heading(v, ω)+β ·dist(v, ω)+γ ·vel(v, ω))
(4)

In which, heading(v, ω) measures to what extent the robot
is progressing towards the target, dist(v, ω) measures the dis-
tance away from the nearest obstacle and vel(v, ω) measures
the forward velocity of the robot. The function σ smooths
the weighted sum for better trajectories optimized from the
objective function.

III. RESULTS

A. Experiment Setup

1) Dynamic Models: Since the algorithm is aimed at UGVs
navigating through crowds, we assume the robot has a radius
of 0.5 m and moves at a reference speed of 1 m/s. It has
a top speed of 4 m/s, a max acceleration of 0.85 m/s2,
and a max steering angle rate of 30 ◦/s. We assume the
UGV follows a bicycle kinematics model with the following
dynamic equations.

d

dt


x

y

θ

v

 =


vcos (θ)

vsin (θ)

v tan(δ)
L

a

 (5)

The dynamic obstacles are modeled to have a radius of 0.2
m and to move linearly in the room with a random initial
speed and angle between 0.1 m/s and 1 m/s and 0 and 2π,
respectively. If it hits the wall, it bounces off it, following the
reflection law.

2) Simulation Environment and Performance Evaluation:
We tested the performance of the methods by Python simu-
lations and ran our experiments on an Intel Core i5-11300H
processor. All the algorithms to have a time step of 0.1 s and a
prediction horizon n = 10 (1 s). We also added an extra 0.05 m
safety margin to increase safety. To solve the LMPCC, we used
the SLSQP method and scipy.optimize.minimize as the solver.
We sampled the DWA dynamic window with a resolution of
0.01 m/s and 0.1/s. We assume that the robot knows where
every obstacle is and recorded five indexes to evaluate safety
and efficiency performance:

• Task Time(s): Time it took to reach the goal.
• Collisions(s): The number of time frames with collisions.
• Collisions Percentage (%): Collisions over the Task time.
• Collision Speed (m/s): Average speed when collisions

happen.
• Computation Time (s): Time to solve the optimization

problem.
We set the Collision Percentage as a metric instead of con-
sidering only Collisions because moving slowly and spending
more time on the task will also lead to collisions in more time
frames. However, it does not mean to be unsafe since colliding
at a slower speed is better than high-speed collisions.



Fig. 1. The figure shows the robot (black hollow rectangle) navigating a room
with a static obstacle(black square), and three dynamic obstacles(red, orange,
and brown circles). It is targeted to reach a goal in the middle of the room.
The blue rectangular region is the collision free space calculated by static
obstacle constraints.

B. Static and Dynamic Obstacles

We achieved essential static and dynamic obstacle avoidance
in simple environments as shown in 1 by implementing the
LMPCC method[2]. The goal is placed at the middle of the
room (10, 10). It averaged 0.20 s computation time for each
time step, spent 12.8 s to reach the goal, and did not collide
with any obstacles.

C. Dense Dynamic Obstacles

To test the effectiveness of the algorithms, we test them with
5, 10, 20, and 40 dynamic obstacles in a 10 m x 10 m room.
The room is set as linear constraints in LMPCC and LMPCC
with OWF but is treated as a surrounding obstacle in DWA
due to the nature of the algorithm.

1) Local Model Predictive Contouring Control (LMPCC):
Table I shows the result of LMPCC. It can consistently
produce reasonable trajectories as in Fig. 2(a) & 2(d) al-
though Task Time, Collisions, Collisions Percentage, and
Computation Time all increases when the number of obstacles
increases. We can observe that the collision speed is much
lower than the reference speed, which is what we desire.

TABLE I
PERFORMANCE EVALUATION OF THE LMPCC SIMULATION RESULTS.

LMPCC
Obstacles 5 10 20 40
Task Time (s) 18.5 21.8 22.1 64.1
Collisions (s) 1.8 1.4 1.8 29.2
Collision Percentage (%) 9.73 6.42 8.14 45.6
Collision Speed (m/s) 0.35 1.11 0.35 -0.31
Computation Time (s) 0.217 0.376 0.503 1.094

2) Dynamic Window Approach (DWA): DWA produces
decent trajectories when the environment is simple as in Fig.
2(b), but may fail to produce feasible trajectories in crowded

environments, as shown in Fig. 2(e). It can calculate the
solution relatively fast since its speed mainly depends on the
sampling resolution. The results in Table II show that the
approach crashes for more than 10 obstacles, which leads to
high crashing speeds when it fails to find a solution.

TABLE II
PERFORMANCE EVALUATION OF THE DWA SIMULATION RESULTS.

DWA
Obstacles 5 10 20 40
Task Time (s) 15.0 27.4 21.5 21.6
Collisions (s) 0.2 4.9 6.2 11.9
Collision Percentage (%) 1.33 17.8 28.8 55.1
Collision Speed (m/s) 0.95 2.25 2.59 3.30
Computation Time (s) 0.104 0.0607 0.0482 0.0443

3) LMPCC with Obstacle Window Filtering (OWF): We
used a 3 m obstacle window (thresdis = 3) for the test cases.
The performance indexes of LMPCC with OWF shown in
Table III have similar trends as the results of LMPCC. The
trajectories are shown in as in Fig. 2(c) & 2(f).

TABLE III
PERFORMANCE EVALUATION OF THE LMPCC WITH OWF SIMULATION

RESULTS.

LMPCC with OWF
Obstacles 5 10 20 40
Task Time (s) 17.6 21.6 24.3 49.3
Collisions (s) 0.9 0.9 1.3 12.5
Collision Percentage (%) 5.11 4.17 5.35 25.4
Collision Speed (m/s) -0.22 -0.22 0.13 -0.14
Computation Time (s) 0.188 0.185 0.279 0.385

IV. COMPARATIVE ANALYSIS

1) Safety: From the results above, we can observe that
LMPCC with OWF performs best considering safety. The
Collision Percentage is the lowest for more than 10 obstacles,
and it collides at the lowest speed in most cases. We speculate
that the trajectories produced by LMPCC with OWF are
better optimization results by discarding irrelevant constraints
and costs. LMPCC also outperforms DWA, which shows that
modeling future control inputs is crucial to navigating crowds.
However, with only five obstacles, DWA collided the least,
although at a higher speed. This result shows a potential to
combine the two algorithms with hierarchical control.

2) Robustness: For real-life applications, performing in all
kinds of scenarios is essential. Considering the results from
our experiments, LMPCC and LMPCC with OWF are more
robust in different scenarios. While experimenting with these
algorithms, we found that tuning parameters is critical for
DWA to produce feasible results. Therefore, research [5] has
been conducted to fine-tune the parameters, and it showed
massive performance improvements, which would be interest-
ing to compare with LMPCC in the future.

3) Computation Efficiency: The calculation speed of the
LMPCC is not fast enough to meet the targeted update rate;
that is a 0.1 s time step (10 Hz) in this experiment. The lack
of speed is not only because we coded it in Python and did not



(a) LMPCC 5 Obstacles (b) DWA 5 Obstacles (c) LMPCC OWF 5 Obstacles

(d) LMPCC 20 Obstacles (e) DWA 20 Obstacles (f) LMPCC OWF 20 Obstacles

Fig. 2. The results of these figures are the three algorithms tested with 5 and 20 obstacles. In the images above, LMPCC generates a smooth trajectory to
reach the goal. DWA performed well under 5 obstacles but failed to find a feasible solution midway and followed the wall to the goal under 20 obstacles.
LMPCC with OWF also provides a smooth trajectory to the goal with better reactive motions.

use a specialized optimization toolkit to solve for the solution
but also because we set naive dynamic obstacle constraints.
Its ability to solve problems in real-time simple environments
has been shown in [2], but more innovative ways to design
constraints should be investigated for applications in crowded
environments.

4) Task Efficiency: The LMPCCs took less than 1 minute to
move about 15 m in an area with 0.4 obstacles/m2, which is
acceptable without the environment reacting. The DWA Task
Time is short because it fails to find a solution that avoids
obstacles and speeds its way to the goal.

V. CONCLUSION & FUTURE WORKS

LMPCC is better than DWA in more complex environments.
However, how it deals with dynamic obstacles is naive and
can be improved. By applying OWF, one can achieve safer
results than considering every obstacle. Future extensions
include research into why OWF affects the result and consider
human reactions to the robot’s presence in MPC since multiple
research[1][4] show that cooperative planners work better than
noncooperative planners.

VI. ACKNOWLEDGMENT

The DWA code was modified from Python Robotics, and
great thanks to Professor Posa and TAs for the fantastic
MEAM 5170 course.

REFERENCES

[1] Trautman, P., & Krause, A. (2010, October). Unfreezing the robot:
Navigation in dense, interacting crowds. In 2010 IEEE/RSJ International
Conference on Intelligent Robots and Systems (pp. 797-803). IEEE.

[2] Brito, B., Floor, B., Ferranti, L., & Alonso-Mora, J. (2019). Model
predictive contouring control for collision avoidance in unstructured
dynamic environments. IEEE Robotics and Automation Letters, 4(4),
4459-4466.

[3] D. Fox, W. Burgard and S. Thrun, ”The dynamic window approach to
collision avoidance,” in IEEE Robotics & Automation Magazine, vol. 4,
no. 1, pp. 23-33, March 1997, doi: 10.1109/100.580977.

[4] Trautman, P., Ma, J., Murray, R. M., & Krause, A. (2013, May). Robot
navigation in dense human crowds: the case for cooperation. In 2013
IEEE international conference on robotics and automation (pp. 2153-
2160). IEEE.

[5] M. Dobrevski & D. Skočaj, ”Adaptive Dynamic Window Approach for
Local Navigation,” 2020 IEEE/RSJ International Conference on Intelli-
gent Robots and Systems (IROS), Las Vegas, NV, USA, 2020, pp. 6930-
6936, doi: 10.1109/IROS45743.2020.9340927.

https://github.com/AtsushiSakai/PythonRobotics/blob/master/PathPlanning/DynamicWindowApproach/dynamic_window_approach.py

	Introduction
	Methods
	Local Model Predictive Contouring Control (LMPCC)
	Static Collision Avoidance
	Dynamic Collision Avoidance
	Cost function for optimization
	Solving LMPCC Problems

	Obstacle Window Filtering (OWF)
	Dynamic Window Approach

	Results
	Experiment Setup
	Dynamic Models
	Simulation Environment and Performance Evaluation

	Static and Dynamic Obstacles
	Dense Dynamic Obstacles
	Local Model Predictive Contouring Control (LMPCC)
	Dynamic Window Approach (DWA)
	LMPCC with Obstacle Window Filtering (OWF)


	Comparative Analysis
	Safety
	Robustness
	Computation Efficiency
	Task Efficiency


	Conclusion & Future Works
	Acknowledgment
	References

