
Multi-Directional Drawing using TM5-900
Manipulator
NTU 2021 Robotics Fall Semester

Chai-Cheng, Hsu
Electrical Engineering, NTU

B06502151
Taipei, Taiwan

hsudani@gmail.com

Kevin, Liao
Electrical Engineering NTU

A10921104
Taipei, Taiwan

kevin.liao@hotmail.de

Pei-An, Hsieh
Electrical Engineering, NTU

B07901061
Taipei, Taiwan

peian8976@gmail.com

Chun-Ting, Lee
Electrical Engineering NTU

B07901141
Taipei, Taiwan

lct841010tim@gmail.com

Abstract—This document has been written for the NTU
Robotics course of the Fall 2021 Semester. In this report the
challenges, solutions and implementations of our final project
will be discussed. This lecture has been held by Prof. Li-Chen
Fu and the TAs Vincent, Peggy, Tommy, Leo and Yu-Hsuan.

Index Terms—TM5-900, ROS, Forward Kinematics, Trajec-
tory planning, Pose estimation.

I. INTRODUCTION

A. Related Work
The main idea of our final project is, to use an industrial

arm - namely the provided TM5 900 manipulator - to perform
a drawing on an arbitrary plane in a 3D space. This project
has been chosen to combine several challenges in computer
vision, trajectory planning and trajectory transformation. With
all of these key components being quite important and relevant
for real world applications.

Several similar drawing robots have been developed. Most
notably the portrait drawing robot by Frederic Fol Laymarie
et. al [1], which tries to mimic the drawing motion of an
actual artist and has been shown in numerous art exhibitions.
Other relevant works include [2], [3] these papers describe
several drawing robots that create drawings based on normal
input images. As basis of our image processing we choose a
contour based approach, that extracts the contours of an image
in the first step and then generates a trajectory based on the
processed image.

Additionally, the aforementioned works only draw on fixed,
well defined planes, which not only eliminates the need for
an automated calibration method, but also simplifies the gen-
eration of the drawing trajectory. This impressive publication
proposes a drawing robot on an arbitrary surface [4], which
can even draw on non planar objects. We, however, limit our
selves on an arbitrary plane.

B. Project Objective Formulation

Our projects main objective is to at least draw on an
horizontal plane, with the additional objective of drawing on
arbitrarily orientated planes. The objectives are listed here:

• Drawing on a horizontal plane (contours) [1]
• Drawing on arbitrary planes (contours) [2]
• Automatic, computer vision-based calibration

Fig. 1. Horizontal plane printing Fig. 2. Arbitrary plane printing

C. Proposed Workflow Diagram

This figure outlines our proposed workflow for the project
(see fig. 3). From this workflow these main components of our
project can be derived:

1) Image processing (contour generation + trajectory gen-
eration)

2) Camera Pose Estimation
3) Trajectory Transformation
4) Drawing of image

In the following chapters the implementation of each of these
components will be described in detail.

Original Image Contour Image

Pose Estimation

𝐶𝑎𝑚
𝐵𝑎𝑠𝑒 𝑇

𝑃𝑙𝑎𝑛𝑒
𝐶𝑎𝑚 𝑇

Trajectory
Transformation

Trajectory gen

Drawing

Fig. 3. Workflow for our implementation of multi-directional printing.

II. HARDWARE

Our project is based on the TM5-900 robot. The TM5-
900 has been provided by the NTU and is a 6DOF industrial
manipulator with high precision (±0.05mm) and integrates
a camera which will be used in the pose estimation part of
our project (see fig. 4). Additionally, we build our own tool

Fig. 4. Image of the TM5 900 robot. [5]

head (see fig. 5). We created a spring loaded tool head in
order to increase the robustness of the drawing procedure. In
figure 6 a schematic drawing of the tool head and its main
parts are shown. Furthermore a tool adapter (see fig. 7) and an
adjustable table for our drawing plane has been build (see fig.

8). The tool adapter was designed by a 3D drawing software,
Inventor, and was produced by plastic using a 3D Printer.

Fig. 5. Custom designed tool head Fig. 6. Schematic drawing of the tool
head

Fig. 7. Adapter between gripper and
tool.

Fig. 8. Table with adjustable plane.

III. IMAGE PROCESSING

A. Obtaining Image Contours

In order to obtain the contours of arbitrary images, we
first transform color images to binary images. Then, we apply
Canny Edge Detection algorithm to detect the contours. This
algorithm can be easily implemented using a function in
OpenCV called Canny. We can observe that after this process,
the original image (see figure 9) has been reduced to contours
with one bit width (see figure 10).

B. Trajectory Planning for Robot Arm

Trajectory planning of this drawing task is accomplished
based on an algorithm designed by ourselves. It requires the
following steps:

1) Pixel Classification: First we classify pixels into two
major point sets, start/end points and branch points. The
start/end points are those pixels which have only one neighbor
pixel that needs to be drawn. On the other hand, branch points
are those pixels which have more than one neighbor pixel that
needs to be drawn. We define neighbor pixels as the 8 pixels
surrounding the pixel under classification. This classification
criterion is shown in figures 11 and 12.

Fig. 9. Original image Fig. 10. Processed image

Fig. 11. Start/end points Fig. 12. Branch points

2) Connecting the Pixels: To form trajectories, we choose
a point in the set of start/end points as the starting point. The
main task is to search through its neighbor points for points
that needs to be drawn and add them to the current trajectory.
During this process, we need to assign another two attribute:
“drawn” and ”visited” to the points. When the searching
process goes through a point, we mark the point visited. We
also mark it and its neighbors as drawn. The ”visited” attribute
prevents the searching process to form loops in the trajectory.
Hence we refresh the ”visited” attribute every time we start
searching for a new trajectory. For the ”drawn” attribute, the
reason why we also need to mark the neighbors as drawn
is to avoid drawing similar trajectories multiple times. This
scenario may happen under the circumstances similar to figure
13. The two red trajectories are both legit trajectories if we
simply search through neighbors. However, the two trajectories
are nearly the same when we draw them out in the real
world. Therefore, there is no need to draw it twice considering
the efficiency of the drawing process. Notice that the drawn
attribute updates only when a trajectory is found, that is, it
reflects on the searching process of the next trajectory.

With these two attributes, we can ameliorate the searching
process as the following: We only search through the neighbor
points that needs to be drawn and are yet visited. When we
encounter a point which is a branch point and has not been
drawn, add it to the current trajectory. If no neighbor points
satisfy the first condition and we encounter a point which is

a start/end point or a branch point which is drawn, we end
the current trajectory. Under this process, trajectory 2 is not
a legit trajectory if we have already found trajectory 1 (see
figure 13).

Fig. 13. An example of similar tra-
jectories drawn.

Fig. 14. An example of how using
drawn attribute improves the drawing
process. The orange tiles mark the
drawn points.

3) Iterating Through the Whole Image: We now know how
to form a trajectory, and the next step is to iterate this process
until all the pixels that needs to be drawn are all drawn. In
the step above, we chose a point in the set of start/end points
as the starting point. It is reasonable for us to first iterate
through the start/end set of points until all points in this set are
drawn. However, the existence of closed curves in the image
implies that only iterating through the set of start/end points as
starting points will still leave out some points. This is because
all points in this closed curve have more than one neighbor
point that requires drawing and are all branch points. Hence
we should set branch points that are not drawn as starting
points and iterate through the set of branch points until all
branch points are drawn. Finally, we will get the whole image
drawn.

IV. VISUAL POSE ESTIMATION

In order for the robot to calibrate on its own, some kind
of pose estimation relative to the plane must be found. For
that we decided to use a 2D-to-3D pose estimation algorithm,
also known as Perspective-n-points problem. In figure 15 the
wanted pose transformation is illustrated.

Fig. 15. Transformation from plane origin to camera coordinate.

A numeric solver is already implemented in OpenCV called
solvePnP. We simple provide this function with corresponding

3D and 2D points and are able estimate our required transfor-
mation Plane

Cam T . Since we can simply choose a known pattern,
the 3D points can be trivially calculated. However, the method
on how to derive our 3D points, defines the origin of our plane.
The 2D points on the other hand have to be detected using a
corner detection algorithm.

To verify the correctness of the estimated transformations
following experiments have been conducted. As seen in figure
16 we fed the algorithm with three different input images of
different perspectives. When compared to our estimated poses,
we get plausible and expected results.

Fig. 16. (l) Three input images with obvious perspective changes. (r)
Estimated poses.

V. TRAJECTORY TRANSFORMATION

A. Base-Gripper Transformation

When operating the TM5-900, we send a pose
(x, y, z, α, β, γ), consisting of Cartesian position and
Euler angles in the robot base coordinate, to control the
gripper pose. The transformation matrix Base

GripT between the
gripper and the base can thus be obtained. The original pose
of the gripper is set as (400, 300, 700, -180, 0 135), therefore

Base
GripR = RxRyRz

=

1 0 0
0 −1 0
0 0 −1

1 0 0
0 1 0
0 0 1

−

√
1
2 −

√
1
2 0√

1
2 −

√
1
2 0

0 0 1

=

−
√

1
2 −

√
1
2 0

−
√

1
2

√
1
2 0

0 0 −1

 .

(1)

Base
GripT =

x

Base
GripR y

z
0 0 0 1

=

−
√

1
2 −

√
1
2 0 400

−
√

1
2

√
1
2 0 300

0 0 −1 700
0 0 0 1

(2)

B. Gripper-Camera Transformation

Now we know the transformation between the gripper and
the base. The transformation between the robot and the plane
is obtained, however, by taking a picture of the plane, which
is the transformation between the camera and the plane. The
transformation matrix Grip

CamT can be obtained considering the
position offset (0, 80, 0, 0, 0, 0) between the gripper and the
camera.

Grip
CamT =

0 0 0 0
0 0 0 80
0 0 0 0
0 0 0 1

 (3)

C. Camera-Plane Transformation

In section IV, the transformation Cam
PlaneT is obtained by

taking picture of a given pattern on the plane.

Cam
PlaneT =

 Cam
PlaneR

Cam
PlaneQ

0 0 0 1

 (4)

D. Plane-Base Transformation

The transformation between the robot base and the plane is
obtained as

Base
P laneT =Base

Grip TGrip
CamTCam

PlaneT (5)

Fig. 17. The drawn picture and the
pen in the plane frame

Fig. 18. Snoopy drawn by the robot

E. Trajectory Transformation

In the plane frame, the xy pixel of the picture correspond
to the xy axis of the frame. To make it simple, the robot
draws perpendicularly to the plane, which means the pen is
always along the z axis. That is, the xyz axis correspond to
the xy pixel of the picture and the pen height respectively.
Applying equation 5 to the position in the plane frame, the
gripper position in the base frame is obtained as

BaseP =Base
P lane T

PlaneP (6)

The gripper pose, always perpendicular to the plane, can be
obtained by transforming the rotational matrix Base

P laneR inside
Base
P laneT to Euler angles.

Base
P laneR =

r11 r12 r13
r21 r22 r23
r31 r32 r33

α = atan2(r32, r33)

β = atan2(−r31,
√
r322 + r332)

γ = atan2(r21, r11)

(7)

VI. EXPERIMENT SETUP

A. Software

The image processing and trajectory planning code is
written using Python 3 in trajectory.py. It requires packages
numpy, cv2, matplotlib, and copy. We saved the generated
trajectories to a text file so that the python scripts of the ROS
nodes could read it. To control the TM5-900 robot arm, we ran
the RosNode in TM-Flow on the computer of the robot arm

and communicated with it running ROS2 on another computer.
We modified image sub.py and sendscript.py from assignment
4 to calculate the transformation from camera to plane and
from pixel to camera respectively. Notice that between two
trajectories, we move the robot arm up 1 cm to avoid drawing
unwanted curves while the robot moves to the next starting
point. This is also written in sendscript.py.

B. Hardware

Set our adjustable plane to an arbitrary angle and make the
gripper grab the drawing tool. Tape the drawing paper on the
plane, and place the given pattern (e.g. checkerboard) that is
used to calculate the transformations on it. After the robot
arm takes a picture for transformation calculation and starts
moving toward the drawing plane, move the pattern away.

VII. RESULTS

The way we accomplished the robot arm drawing task is by
following these steps:

1 Pick an image, and generate its trajectory by running
trajectory.py.

2 Place the given pattern and drawing paper on an arbitrary
plane to be drawn on.

3 Start the robot and follow the steps of assignment 4 to
run image sub.py and sendscript.py. It will first take a
picture of the pattern, and obtain the transformations.

4 Then the robot will move toward the plane and start
drawing.

5 Wait until the robot arm finishes drawing.
6 Move the robot arm up by running sendscript.py again.
The result of drawing the sample snoopy image is in Fig.18.

This snoopy image is drawn on a plane with an arbitrary plane
angle. We can observe that the robot drew the image with
high precision and covered all the details. The whole drawing
process took about 10 minutes and used 21 trajectories. Still,
there are some distortions in the drawing which is due to the
fact that the tool we designed wobbles slightly in the horizontal
direction during the drawing process. This means that the point
of the drawing pen sometimes lags behind the gripper. When
the robot is not only drawing a straight line, the lag causes
distortions.

VIII. FUTURE WORKS

Since it is just a prototype, there are plenty of room for
improvement. The four main aspects that we can improve in
the future are listed below:

A. Trajectory Planning

The trajectory planning algorithm we used is just an algo-
rithm efficient enough for us to prove our concept. To enhance
efficiency, one can start from searching for starting points
nearer to the ending point of the last trajectory. On the other
hand, adding velocity information to each step will enable the
drawing robot to complete more challenging drawing tasks,
e.g., calligraphy and watercolor.

B. Pose Estimation

Although we can get the correct desired pose, the robot
arm may collide with the drawing plane while moving to the
drawing position. This means that environmental information
and collision avoidance mechanism is needed when the robot
detects the drawing plane and decides whether it is possible
to draw on the plane at its current position.

C. Drawing Tool

The most crucial issue for us to improve the quality of our
drawing is the stiffness of our drawing tool. The wobbling in
the horizontal direction should be fixed to increase precision.

D. Multi-color & Multi-tools

In this case, we only use one color to paint our picture. In
the future, we can design a table placed in a certain place to
contain other pens that have different color. The robot arm can
reach out to the table to change colors and paint the picture
more vividly. Furthermore, we can try to use different tools,
such as paint brush or calligraphy brush to try different style
of painting.

IX. CONCLUSION

Most drawing robots draw on a horizontal plane. With a
six degree of freedom robot arm, we can take advantage of
its dexterity to perform drawing on arbitrary angled planes.
This is an area that has not been thoroughly researched, and
we designed a prototype for accomplishing this task. The
robot arm executed the task successfully and provided a proof
of concept. Using this experiment as a foundation, one can
develop robot arms and control methods for more ambitious
drawing tasks in the future.

X. WORK DISTRIBUTION

Work Distribution Chart
Hsu Liao Hsieh Lee
25% 25% 25% 25%
3D-printed
adapter/
Drawing
Tool/
Trajectory
Transfor-
mation

Camera
Pose
Estimation/
Drawing
Tool

Image
Processing/
Trajectory
Planning

Camera
Pose
Estimation/
Trajectory
Transfor-
mation

XI. RESOURCES

Source code and demo video links are listed below:
This is the GitHub link for the python codes.
This is the link for the demo video: Team8 Multi-Directional
Drawing.mp4.

REFERENCES

[1] Tresset, Patrick, and Frederic Fol Leymarie. ”Portrait drawing by Paul
the robot.” Computers & Graphics 37.5 (2013): 348-363.

[2] Calinon, Sylvain, Julien Epiney, and Aude Billard. ”A humanoid robot
drawing human portraits.” 5th IEEE-RAS International Conference on
Humanoid Robots, 2005.. IEEE, 2005.

[3] Deussen, Oliver, et al. Feedback-guided stroke placement for a painting
machine. 2012.

[4] Song, Daeun, Taekhee Lee, and Young J. Kim. ”Artistic pen drawing on
an arbitrary surface using an impedance-controlled robot.” 2018 IEEE
International Conference on Robotics and Automation (ICRA). IEEE,
2018.

[5] TM5-900, TM 6-axis robot incl. controller, reach 900mm, pay-
load 4kg. Weidinger.eu. (n.d.). Retrieved January 13, 2022, from
https://www.weidinger.eu/en/p/wl48027

https://github.com/pei06/multidirectioinal_painter
https://drive.google.com/file/d/1H7gwQ_e6MIQX2H7vSV0FeBZwmFWo7oIN/view?usp=sharing
https://drive.google.com/file/d/1H7gwQ_e6MIQX2H7vSV0FeBZwmFWo7oIN/view?usp=sharing

	Introduction
	Related Work
	Project Objective Formulation
	Proposed Workflow Diagram

	Hardware
	Image Processing
	Obtaining Image Contours
	Trajectory Planning for Robot Arm
	Pixel Classification
	Connecting the Pixels
	Iterating Through the Whole Image

	Visual Pose Estimation
	Trajectory Transformation
	Base-Gripper Transformation
	Gripper-Camera Transformation
	Camera-Plane Transformation
	Plane-Base Transformation
	Trajectory Transformation

	Experiment Setup
	Software
	Hardware

	Results
	Future Works
	Trajectory Planning
	Pose Estimation
	Drawing Tool
	Multi-color & Multi-tools

	Conclusion
	Work Distribution
	Resources
	References

